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generation vehicle technologies, like hydrogen fuel-cell 
vehicles with a typical range and refueling time similar  
to conventional vehicles, are able to enter the market at 
high volumes.

Although electric vehicles that use electricity from a low-
carbon grid typically have lower lifecycle greenhouse gas 
emissions than similar conventional vehicles, this advan-
tage is not as strong in areas where coal is used heavily to 
generate electricity.85 However, EPA is starting to incen-
tivize the production of clean electricity for use by electric 
vehicles under its recently updated renewable fuel stan-
dard (RFS).86 Specifically, electricity used to power electric 
vehicles produced from a wide range of bio-based sources, 
such as biogas from landfills, municipal wastewater treat-
ment facility digesters, and agricultural digesters, now 
qualify to be used for compliance under the updated RFS. 
According to the Vermont Energy Investment Corpora-
tion, this new rule could create new revenue streams for 
utilities and farmers (that generate biogas from methane  
digesters) and encourage utilities to support electric 
vehicles.87 EPA is also working toward decarbonizing 
the electric grid over time; their recently proposed Clean 
Power Plan would reduce the carbon intensity of the U.S. 
power system by roughly 15 percent in 2020 compared 
with business-as-usual projections for the same year.88 

Hydrogen Vehicles
Like electric vehicles, hydrogen vehicles face challenges 
from lack of infrastructure and the carbon intensity of  
fuel production.

Compared with charging stations for electric vehicles, 
the network for hydrogen filling stations is far less devel-
oped—only 12 public hydrogen filling stations exist in the 
United States, 10 in California and 1 each in South Caro-
lina and Connecticut.89 California is clustering stations 
where the first fuel-cell vehicle drivers are likely to live 
to give both manufacturers and consumers greater con-
fidence that stations will be available. If all stations are 
developed as planned, California will have about 51 public 
hydrogen stations in 2015.90 Other states are making prog-
ress; for example, the Texas Emission Reduction Program 
recently awarded partial funding to build the state’s first 
public hydrogen fueling station.91 However, for fuel-cell 
vehicles to become widespread, major developments in 
hydrogen fueling infrastructure need to occur nationwide. 
Federal, state, or city mandates, in combination with 

funding that continues to support stations during the  
initial ramp up of hydrogen vehicle penetration, could 
help spur this development. 

Most hydrogen fuel produced in the United States (95 per-
cent) is made by a process called natural gas reforming in 
large central plants. The process emits greenhouse gases;92 
however, over its lifecycle, the hydrogen fuel produced has 
climate benefits over petroleum-based fuels.93 Researchers 
are also developing cleaner methods to produce hydrogen, 
such as using excess renewable energy for electrolysis, 
which could not only create fuel for vehicles but also store 
energy from the grid, a combination that could help the 
economics of renewable energy.94 California requires all 
proposed stations to supply hydrogen produced with at 
least 33 percent renewable energy and provides incen-
tives for fueling stations that supply hydrogen produced 
with 100 percent renewable energy.95 The initial price 
for hydrogen fuel at the pump will likely be high; current 
estimates fall around $10 per gallon of gasoline equivalent 
(untaxed).96 Even at these prices, a fuel-cell vehicle’s fuel 
operating cost will only be about 20 percent higher than a 
comparable current gasoline vehicle because the fuel-cell 
vehicle is expected to travel more than twice as far per  
gallon of gasoline equivalent because of its superior  
efficiency (for example, the Honda Clarity gets 60 mpg 
of gasoline equivalent compared with a current typical 
midsize car’s fuel economy of 28 mpg).97 As hydrogen 
production for transportation grows in scale and matu-
rity, the cost to dispense hydrogen at a station is expected 
to decrease. A recent analysis by University of California 
Davis’ Institute for Transportation Studies concluded that 
hydrogen fuel-cell vehicles could have fuel operating costs 
less than or equal to hybrid gasoline electric vehicles over 
the long term.98

Natural Gas Vehicles
While natural gas vehicles currently cost more than gaso-
line and diesel powered vehicles, the current low price of 
natural gas provides an enticing incentive for the develop-
ment and deployment of natural gas vehicles. However, 
a few key challenges for natural gas cars and light trucks 
remain, including a limited fueling infrastructure and the 
size of in-vehicle natural gas storage tanks. In addition, 
the current methane leakage rate for natural gas systems 
could cause these vehicles to actually increase overall 
greenhouse gas emissions. Even if the rate is reduced  
considerably (see Chapter 4), the benefits of switching 
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from gasoline to natural gas will remain much more lim-
ited than the benefits of switching electric generation from 
coal to gas.

Until recently, the only dedicated compressed natural 
gas (CNG) light-duty vehicle in the United States was the 
Honda Civic Natural Gas vehicle,99 but several manufac-
turers are now offering additional dedicated or bi-fuel 
trucks and vans that can run on either gasoline or CNG.100 
The sale price for these vehicles is higher than compa-
rable gasoline models; for example, the Civic CNG costs 
$26,640 whereas a gasoline Civic Sedan costs $19,190.101 
However, CNG vehicles can offer savings at the pump,  
as long as natural gas prices stay low. As of April 2014, 
CNG is more than a dollar cheaper than an equivalent  
gallon of gasoline.102 

The large size of the compressed gas storage tank presents 
some challenges for CNG vehicles. These tanks can com-
promise the interior vehicle space and utility.103 Higher 
pressure tanks can reduce the amount of space required, 
but come with higher costs and energy requirements to 
compress the gas. 

As with other alternative vehicles, the refueling infrastruc-
ture for natural gas vehicles is not well developed; as of 
mid-2014 there were only 732 CNG fueling stations across 
the country.104 The methane leakage from the refueling 
infrastructure is not well known, but ongoing studies are 
examining this issue.105 

Natural gas vehicles could help reduce petroleum con-
sumption, but their greenhouse gas emissions, including  
upstream methane emissions, cast doubt on their long-
term climate benefit. Many studies have found that  
methane leakage associated with the production and 
transport of natural gas can undermine the greenhouse 
gas benefits of its use as a transportation fuel.106 For natu-
ral gas vehicles to present relative climate advantages over 
gasoline-fueled vehicles, the leakage rate would need to be 
kept below roughly 1.6 percent.107 Most recent studies,  
however, have found that current natural gas systems 
have a higher leakage rate (for more discussion on this 
topic, see Chapter 4). Notably, the 1.6 percent leakage rate 
is merely the breakeven point between natural gas and 
gasoline. Meanwhile, natural-gas-powered electric gen-
eration emits about one-half as many greenhouse gases 
as a coal-fired plant. This suggests that the better climate 
investment is using natural gas to fuel power plants as 
opposed to vehicles.

Autonomous Vehicles 
Some analysts have suggested that autonomous (or self-
driving) cars have the potential to revolutionize the trans-
portation system, but doubts still remain on the net fuel 
savings benefit these vehicles could achieve.108 While such 
vehicles may sound impossibly futuristic, some of these 
technologies, such as lane-keeping and warning systems, 
adaptive cruise control, parking assistance, are available 
now.109 Google has already started testing autonomous 
vehicles on public roads.110 Because these vehicles can be 
programed to optimize traffic flows, some believe autono-
mous vehicles could lead to safer and more efficient driv-
ing.111, 112 However, great uncertainty remains about the 
net benefit of autonomous vehicles; the National Academy 
of Sciences noted that while potential for efficiency and 
safety benefits exists, new mobility opportunities available 
through autonomous driving could dramatically increase 
overall vehicle miles travelled.113 The National Renew-
able Energy Laboratory found that, depending on market 
penetration and other factors, autonomous vehicles could 
reduce fuel consumption by 90 percent or increase it by 
more than 250 percent.114 Legal, liability, privacy, insur-
ance, and cost concerns also remain.115 For example, new 
regulations would be needed for auto insurance as well as 
new federal and state guidelines for use of autonomous 
vehicles on public roads (beyond testing purposes).116 

Changes in Driving Preferences Caused  
by More Efficient Vehicles 
Reducing per-mile transportation costs by increasing 
vehicle efficiency or by moving to cheaper fuels, such 
as electricity, could lead to an increase in vehicle miles 
travelled (and thus fuel consumption). However, studies 
have demonstrated this rebound effect is generally small 
for personal transportation, in the range of 10 percent.117 
The rebound effect could be more noticeable as more 
drivers trade in conventional vehicles for electric vehicles, 
which have per-mile fuel costs that are about 70 percent 
lower.118 In theory, this could lead to a 7 percent increase 
in vehicle miles travelled. Even if that occurs, however, 
electric vehicles will still have greenhouse gas benefits over 
conventional cars (based on the national average emis-
sions intensity of the electricity grid in 2013).119 Since most 
electric vehicles today have limited ranges, the rebound 
effect may be more limited or nonexistent. Looking ahead, 
improved battery technology allowing for longer ranges, 
changes in the greenhouse gas intensity of the electric 
grid, and changes in fuel costs could all affect driving  
patterns of electric vehicle owners. 
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BRINGING THESE OPPORTUNITIES  
TO SCALE
Current standards (finalized in 2012) will roughly double 
the fuel economy of new cars by 2025 while saving cus-
tomers money. However, if technological progress con-
tinues, it should be easier and more cost effective to meet 
the 2025 standards, and might even be possible to achieve 
deeper reductions after 2025. It is also possible that par-
ticularly rapid advancements could even allow DOT and 
EPA to make the standards more ambitious during the 
mid-term CAFE review for MY 2022–25.i, 120

Continued fuel economy improvements will also help 
enhance U.S. energy security and help improve air quality. 
Reducing light-duty vehicle CO2 emissions by 80 percent 
below 2005 levels by 2050 could lead to $670 billion to 
$2.3 trillion in net savings because of reduced fuel costs 
(net present value), according to the National Academy  
of Sciences.j, 121 Realizing these goals depends heavily  
on the rate of technological progress. The Academy of  
Sciences concludes that this will require “strong and 
effective policies emphasizing research and development, 
subsidies, energy taxes, or regulations will be necessary 
to overcome cost and consumer choice factors.” In addi-
tion, it will require policies and programs to help lay the 
infrastructure to support these new technologies, mak-
ing it easier for early movers. Four of the key policies are 
profiled below.

Increase the number of alternative fuel 
stations, such as electricity and hydrogen.
As previously mentioned, electric vehicle and hydrogen 
charging stations still represent only a fraction of the 
number of fueling stations in the United States. Federal, 
state, or city funding or mandates, in combination with 
private funding, could help spur the construction of more 
stations to help ease range anxiety. For example, Califor-
nia’s AB8, signed into law in September 2013 includes a 
provision to fund at least 100 hydrogen stations with a 
commitment of up to $20 million a year from its Alterna-
tive and Renewable Fuel and Vehicle Technology Pro-
gram.122 This commitment to fund infrastructure provides 

certainty for companies as they make their own commit-
ments to vehicle manufacturing.123 Several automakers 
expect to bring hydrogen vehicles to the California market 
in the next few years. 

As the number of electric vehicles increases, private 
investment, from utilities for example, may gradually take 
over financing charging stations. For example, electric 
utilities could install and inspect home charging stations 
as well as develop public charging stations. This would not 
only help expand the alternative vehicle fueling infrastruc-
ture, but also open up additional revenue streams for utili-
ties. The Georgetown Climate Center concluded that many 
additional benefits could be derived from this business 
model—the utility could ensure that the charging equip-
ment operates efficiently on the grid without disruption, 
charge a fee based on the amount of electricity consumed 
(which non-utilities are not typically allowed to do in 
most states), and expand service to less profitable areas 
that might be ignored by other private companies, among 
others.124 Analysis by Silver Spring Networks, a smart grid 
company, found a benefit-to-cost ratio of 1.83 (net pres-
ent value) for utilities that owned, installed, and operated 
their own electric vehicle charging equipment.125 

Improve charging options by eliminating 
barriers to access and adopting communication 
standards that provide for controlled charging. 
Public charging stations can cost between $15,000 and 
$25,000, plus the cost of installation.126, 127 Unlike gasoline 
stations, which serve any driver, many charging sta-
tions are run as networks of private stations. Drivers who 
want to charge at a station outside  their network may be 
refused access or asked to pay a higher cost.128 New federal 
regulations or mandates that ensure open access to all 
electric vehicle charging stations would help address the 
fractured nature of these networks. 

Vehicle charging standards should also incorporate 
communication standards that enable controlled charg-
ing. Because drivers are typically in their cars for a short 
amount of time during the day, electric vehicles are usu-
ally parked and could be connected to charging infrastruc-
ture for more hours than needed to receive a full charge. 

i.	� Because of the long timeframe of the MY2017–25 standards and because the National Highway Traffic Safety Administration (NHTSA) is required to conduct a separate rulemaking to 
establish final standards for vehicles for MY2022–25, EPA and NHTSA will conduct a comprehensive midterm evaluation and agency decision making process. This should occur by April 1, 
2018 (See U.S. Environmental Protection Agency, 2012).

j.	� Note, this analysis defines net present value (NPV) as “the sum of all costs and benefits from 2010 to 2050, plus the fuel, GHG, and petroleum costs and benefits of vehicles sold through 
2050 that will still be in use beyond that date.” A 2.3 percent rate for all years was used, which is consistent with the most recent guidance of the U.S. government (See National Research 
Council, 2013).
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Enabling grid operators to align electric vehicle charging 
with periods of high generation from variable renewable 
resources could help them cost effectively balance sup-
ply and demand. This would save grid operators money, 
a portion of which could be passed along in the form of 
savings for electric vehicle owners.129 

Expand research and development for  
new technologies.
Sustained research and development by federal or state 
governments and private investors should drive advance-
ment of next-generation technologies and help the United 
States take a leadership position in alternative vehicle 
manufacturing. As of 2009, Asia accounted for over 90 
percent of the global production of batteries,130 which can 
account for up to 50 percent of the cost of a new electric 
vehicle.131 Expanding battery manufacturing in the United 
States could help American manufacturers capture more 
value in the battery supply chain. As mentioned, Tesla is 
planning to do just that and their upcoming “gigafactory” 
is expected to produce large electric vehicle batteries that 
are 30 percent cheaper than today’s batteries by 2017.132 

Sustain and expand federal and state  
mandates and incentives to promote sales  
of alternative vehicles. 
Sustained technological progress will require continued 
deployment of new vehicles, and the learning-by-doing 
that comes with it. State and federal mandates and incen-
tives can help ensure that these early-stage vehicles make 
it to market. The multi-state zero emission vehicle initia-
tive discussed previously is expected to put 400,000 zero 
emission vehicles on the road by 2015 and about 1.4 mil-
lion by 2020, potentially accelerating the learning curve.133 
This initiative has developed several key actions that if 
implemented would help promote zero emission vehicle 
leases or purchases, including: providing financial incen-
tives, promoting infrastructure development, and increas-
ing the number of zero emission vehicles in state and 
municipal fleets.134 Expanding this target to include more 
states or establishing an equivalent federal program could 
further help increase the penetration of these vehicles.

States may also wish to consider providing alternative 
vehicles access to high-occupancy vehicle lanes. For 
example, California allows drivers of CNG, hydrogen, 
and electric cars to travel in HOV lanes regardless of the 
number of occupants.135 The first 40,000 applicants that 
purchased or leased a plug-in hybrid vehicle also qualified 
for this benefit, and the cap was hit on May 9, 2014.136 
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chapter 4: improved production, 
processing, and transmission of 
natural gas
OVERVIEW
Methane, the primary component of natural gas, is a 
potent greenhouse gas, with at least 34 times the global 
warming potential of carbon dioxide.a, 1 Leaks and vents of 
natural gas occur throughout the natural gas supply chain, 
from drilling through production, processing, transmis-
sion, distribution, and end use. These emissions reduce 
the greenhouse gas advantage that natural gas provides 
over coal, and can reduce or eliminate the benefits it might 
provide over gasoline and diesel as a fuel for cars and 
trucks. In addition, toxic gases co-emitted with methane 
cause smog and air pollution that harms human health 
and the environment.

The exact scale of methane leakage is not known; the 
U.S. Environmental Protection Agency’s (EPA) 2014 
Greenhouse Gas Inventory estimates that the natural gas 
system’s methane leakage rate was about 1.2 percent in 
2012, but many recent studies suggest that it may be much 
greater, perhaps in the range of 3 percent to as high as 10 
percent.b, 2 The points of methane leakage in the natural 
gas production process and a comparison of the leakage 
rates estimated by several studies with EPA’s estimates are 
shown in Figure 4.1. Even at a leakage rate of 1.2 percent, 
natural gas companies would be emitting the equivalent of 
the annual greenhouse gas emissions of 32 million cars or 
40 coal-fired power plants.3 

a. �According to the latest estimates from the Intergovernmental Panel on Climate Change, because it is a powerful but short-lived greenhouse gas, methane traps 34 times as much heat in the 
atmosphere as CO

2
 over 100 years, and 86 times as much over 20 years. (See Gunnar Myhre, 2013.)

b. �Because EPA does not report an average nationwide leakage rate, WRI calculated a figure of 1.2 percent using methane emissions data from the 2014 EPA Greenhouse Gas Inventory, and 
natural gas production data from the U.S. Energy Information Administration. To convert volumes of methane to volumes of natural gas, we assumed an average methane content of natural 
gas of 90 percent across all life cycle stages. (See U.S. Environmental Protection Agency, 2014, and U.S. Energy Information Administration, August 2014.)

Nationwide, NGML/EPA, 2006
Nationwide, GTI, 2009
Los Angeles, CARB/UC Irvine/NOAA, 2010
Texas & New Mexico, URS/U Texas, 2011
Colorado, NOAA, 2012

Los Angeles, Caltech, 2012
Nationwide, Harvard, 2013
Los Angeles, CU Boulder, 2013
Utah, NOAA, 2013
Nationwide, U Texas, 2013

Notes: This figure relies on data from the 2013 Environmental Protection Agency Inventory, Annex 3, available at http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-
Inventory-2013-Annexes.pdf.
Source: M. Lavelle, 2014, “Methane Emissions Far Worse than U.S. Estimates, but Study Concludes Natural Gas Still Better than Coal,” The Great Energy Challenge, February 13, National 
Geographic Society, accessible at http://energyblog.nationalgeographic.com/2014/02/13/methane-emissions-far-worse-than-u-s-estimates-but-study-concludes-natural-gas-still-better- 
than-coal/.
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Fortunately, reducing methane emissions is often good for 
business because companies are able to sell more natural 
gas rather than let it escape into the air. Voluntary mea-
sures to reduce emissions have already led to an increase 
of over $264 million in revenue from natural gas sales, 
according to EPA.4 However, their use remains uneven 
largely because of market barriers, such as opportunity 
costs, imperfect information, and principal-agent prob-
lems, which impair the ability of drillers and other service 
providers to capture the increased revenue from changes 
in equipment and practices. Analysis has shown the 
natural gas industry could make over $1 billion per year by 
capturing additional wasted gas.5 

New legislation or standards, such as greenhouse gas 
emissions standards under section 111(d) of the Clean  
Air Act, could overcome these market barriers and help 
realize this lost opportunity. Other federal agencies can 
take steps to help reduce emissions in ways that would 
complement such regulations. For example, the Federal 
Energy Regulatory Commission (FERC) can pursue tariff 
adjustments, the Department of Energy (DOE) can help 
improve emissions measurement and control technolo-
gies, and the Pipeline and Hazardous Materials Safety 
Administration (PHMSA) could require stricter inspection 
and maintenance standards for gathering, transmission, 
and distribution systems.6 
 

PROFILES OF CHANGE
Recent studies support the notion that there is a “fat-tail 
distribution” of methane emissions, meaning that a small 
percentage of sources are responsible for a large percent-
age of the emissions.7 Through good practices or voluntary 
emissions reduction measures, many companies through-
out the natural gas supply chain—from well drilling 
through distribution—are already taking steps to reduce 
methane emissions. Voluntary measures, like the ones 
below, already reduce about 20 percent of methane emis-
sions from natural gas systems, according to EPA.8 These 
measures include:9 

  �Using artificial lifts to increase well pressure to stimu-
late the flow of natural gas while liquids are removed 
from the well reduced emissions by 12 billion cubic feet 
in 2012.c 

  �Using pipeline blowdown techniques to lower pressure 
in transmission pipelines while venting natural gas 
during planned maintenance or emergency shutdowns 
reduced emissions by over 4 billion cubic feet in 2012. 

  �Performing reduced emissions completions (also called 
green completions) at the wellhead reduced meth-
ane emissions by over 12 billion cubic feet across the 
country in 2012, earning companies nearly $50 million 
in additional revenue from selling this gas. Performing 
reduced emissions completions at natural gas wells will 
soon be required under EPA rules.d, 10 

These and other actions are being taken by a number of 
companies throughout the natural gas industry, such as 
El Paso (now part of Kinder Morgan) and Southwestern 
Energy, which have recognized the advantages of going 
beyond regulations to voluntarily implement emissions 
reduction technologies and techniques.11 Among the addi-
tional measures Southwestern adopted are: using auto-
mated compressors to reduce venting, installing no-bleed 
pneumatic controls, and using infrared cameras to identify 
leaks to be repaired. In addition, the company performed 
reduced emissions completions at many of its wells for 
years before EPA’s 2012 New Source Performance Stan-
dards (NSPS).12 State or federal standards could lead to 
increased deployment of these measures and other best 
practices across the industry. 

OPPORTUNITIES FOR SCALE
New Air Pollution Rules Will Reduce  
Leaks and Vents
Reducing or eliminating the leaking, venting, and flar-
ing of natural gas can also provide significant health and 
air quality benefits. Hazardous air pollutants and volatile 
organic compounds (VOCs) like benzene are released into 
the atmosphere along with methane, especially at the well-
head (natural gas processing removes many such impuri-
ties). Natural gas development is a major source of smog 
in many areas: rural areas in Wyoming with high concen-
trations of natural gas operations have experienced worse 
smog than the city of Los Angeles.13 While monetizing the 
impact of reducing emissions of methane and conven-
tional air pollutants from natural gas systems can be chal-
lenging, studies have suggested that the health benefits 

c. �Assuming a natural gas composition of 85 percent methane and a 100-year global warming potential for methane of 34.
d. �Beginning in October of 2012, companies have had to flare or capture natural gas emitted during well completions, the process by which a well is made ready for production. By 2015, all 

of this gas must be captured. WRI estimates that these rules will reduce methane emissions by 13 percent in 2015 and 25 percent in 2035 below a business-as-usual trajectory. Revenue 
estimate based on gas price of $4 per thousand cubic feet. (See James Bradbury, 2013.)
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due to improved air quality could be as high as $2,640 per 
metric ton of volatile organic compounds nationwide, with 
even higher benefits in some localities.14 

EPA rules to reduce emissions of hazardous air pollutants, 
sulfur dioxide (SO2) and volatile organic compounds15 are 
projected to reduce emissions of volatile organic com-
pounds by 172,000 metric tons in 2015 alone.16 Mean-
while, they are expected to save the natural gas industry 
approximately $10 million per year once fully implemented 
 in 2015 because the value of the natural gas saved is 
greater than the cost of equipment to capture it (annual 
savings are estimated at $330 million versus $320 million 
in compliance costs).17 The rules will have the co-benefit 
of reducing total greenhouse gas emissions from natural 
gas systems by 10 to 15 percent, or roughly 19–33 million 
metric tons of CO2 equivalent.18 By 2035, methane emis-
sions could be reduced 25 percent below annual business-
as-usual projections, as old equipment is replaced over 
time and new equipment becomes subject to the new 
standards.19, 20

Some states, notably Wyoming, Colorado, and Pennsylva-
nia, have implemented rules that go beyond EPA’s new air 
quality standards.21 But analysis suggests that even these 
states have left considerable opportunities on the table. By 
building on the example set by these states and going even 
further to require the use of many or all of the technologies  
that have proven to be cost-effective means of reducing 
emissions, the United States could make deep, lasting cuts 
in methane emissions. 

Studies Confirm Profitability of Reducing 
Emissions 
A significant fraction of methane emissions not currently 
addressed by state or federal policies could be cost-
effectively reduced with existing technologies, according 
to two recent studies. Over 20 percent of the remain-
ing methane emissions from onshore gas development 
after the implementation of EPA’s new standards can be 

reduced at net negative cost (that is, they generate net 
savings), and 40 percent of emissions can be reduced at 
an average cost of just $0.01 per thousand cubic feet of 
natural gas produced,e according to a 2014 study by ICF 
International.22 These estimates are based on conserva-
tive assumptions, including the high end of the range of 
equipment costs and the low end of the range for emis-
sions reductions from that equipment, ICF notes. They 
also do not include the ancillary benefits of cleaner air and 
reduced greenhouse gas emissions. A 2012 study by the 
Natural Resources Defense Council suggested even greater 
levels of negative cost opportunity, and that legislation or 
standards to move the entire industry to use best prac-
tices would generate revenue of $1.5 billion annually (at 
gas prices of $4 per thousand cubic feet) and reduce U.S. 
greenhouse gas emissions by approximately 150 million 
metric tons of CO2 equivalent in 2020,23 while reducing 
emissions of harmful air pollutants. 

As natural gas prices rise, the savings generated through 
the deployment of many of these technologies and 
practices will increase (see Box 4.1 for examples of cost-
effective emissions reduction strategies). These studies 
examined the cost savings available at spot prices of $4 
per thousand cubic feet, which is roughly equal to average 
spot prices for 2013 through the first half of 2014. How-
ever, prices are expected to increase about 20 percent by 
2020,24 especially if the United States begins exporting liq-
uefied natural gas (see Chapter 1 for more details).f, 25 This 
suggests that it may be possible to achieve deeper levels of 
reductions while generating financial savings for industry.

However, higher prices also make more gas production 
economically viable, leading to increased production and 
the possibility of greater greenhouse gas emissions—
unless additional steps are taken to reduce methane 
emissions. Nevertheless, deploying the technologies and 
practices examined in the ICF and NRDC reports could 
significantly reduce industry-wide methane emissions 
below a business-as-usual trajectory, even as technological 
advances open up new gas reserves.26 (Note, the projected 
increase in natural gas production is shown in Figure 4.2.) 

e. �For reference, in the first six months of 2014, natural gas spot prices largely fluctuated between $4 and $5 per thousand cubic feet (Mcf). However, for a few weeks at the start of 2014, 
natural gas prices jumped to nearly $7 per Mcf due to the intensely cold winter experienced across the United States, which led to large withdrawals of natural gas from storage. Prices then 
quickly retreated to between $4 and $5 per Mcf.

f. �In recent years, increased supply drove down the monthly average spot price of natural gas in the United States from $13 per thousand cubic feet in June 2008 to a low of $2 per thousand 
cubic feet in April 2012. As demand for natural gas has risen for both electricity production and as an industrial feedstock, prices have rebounded to between $4 and $5 per thousand cubic 
feet, as of this writing. (See U.S. Energy Information Administration, August 2014.) 
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Dry seal centrifugal compressors: Centrifugal compressors are 
used at processing plants and compressor stations to keep gas moving 
through the pipeline. Seals around the compressor prevent gas from 
escaping, but some seals work better than others. “Wet” seals use oil 
to prevent natural gas from escaping, while dry seals do not. Dry seals 
have proven more effective at reducing methane leaks, and are more 
reliable as well.a Ensuring that all new centrifugal compressors use dry 
seals, and retrofitting wet seal compressors where appropriate, would 
lead to significant emissions reductions—on the order of 17 million 
metric tons of CO

2
 equivalent from the processing and transmission 

stagesb—with a payback period of under three years. In July 2014, the 
Department of Energy proposed energy efficiency standards for natural 
gas compressors,c a positive step that may indirectly reduce methane 
emissions, but will not be as effective as—and should be considered a 
complement to, not a substitute for—directly regulating methane emis-
sions from compressors and other sources.

Low-bleed pneumatic devices: Pneumatic devices are used 
throughout the natural gas industry, to control and regulate tempera-
ture, pressure, and liquid levels, among other functions. These devices, 

powered by pressurized natural gas, are designed to release natural gas 
into the atmosphere. Replacing high-bleed pneumatics with low-bleed 
equivalents is frequently mentioned as one of the most cost-effective 
emissions reduction options available to the natural gas industry. The 
U.S. Environmental Protection Agency estimates that pneumatic control-
lers are responsible for 13 percent of all methane emissions from natural 
gas systems,d and that investments to replace high-bleed devices with 
their low-bleed equivalents can reduce emissions by up to 90 percent 
and pay for themselves in less than one year.

Leak detection and repair: Leaks from pumps, valves, compressors, 
and other equipment throughout the natural gas supply chain, can be 
detected in many ways, from infrared cameras to a simple soap-bubble 
test. Identifying and fixing leaks wherever they occur reduces waste 
while also improving safety at natural gas facilities and improving air 
quality in the surrounding areas. Depending on the cost of the technol-
ogy used to identify leaks, the frequency of the leak surveys, and the 
quantity of gas escaping into the atmosphere, leak detection and repair 
programs are often one of the most cost-effective means for reducing 
methane emissions.

Notes:  
a.  �See U.S. Environmental Protection Agency, 2006, “Replacing Wet Seals with Dry Seals in Centrifugal Compressors,” EPA, Washington, DC, October, accessible at http://www.

epa.gov/gasstar/documents/ll_wetseals.pdf.

b. �Assumes a 100-year global warming potential for methane of 34. See Environmental Protection Agency, 2014, “Annex 3- Methodological Descriptions for Additional Source 
or Sink Categories,” EPA, Washington, DC, April, accessible at  http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2014-Annex-3-Additional-
Source-or-Sink-Categories.pdf.

c. �See Energy Efficiency and Renewable Energy Office, 2014, “Energy Conservation Program for Certain Commercial and Industrial Equipment: Gas Compressors; Request  
for Information,” Federal Register Pre-Publication, July 28, accessible at http://www.regulations.gov/#!documentDetail;D=EERE-2013-BT-STD-0040-0022.

d. �U.S. Environmental Protection Agency, 2014, “Oil and Natural Gas Sector Pneumatic Devices,” EPA Office of Air Quality Planning and Standards, April, accessible at  
http://www.epa.gov/airquality/oilandgas/2014papers/20140415pneumatic.pdf. 

Box 4.1 | �Examples of Emissions Reductions Technologies and Techniques
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Figure 4.2  |  �Natural Gas Production by Source, 1990–2040
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and investors operate under capital constraints and the 
estimated financial returns of such GHG reduction projects 
may not justify diverting capital from other higher-return 
or more strategic initiatives.”28  

Because of these barriers—principal-agent problems, 
imperfect information, and opportunity costs—policy 
intervention is required to ensure reduced methane emis-
sions. Although new state and federal regulations will help 
curtail emissions while delivering savings to owners and 
operators of natural gas systems, additional standards are 
needed to realize the full scope of cost-saving opportuni-
ties that have been identified.

BRINGING THESE OPPORTUNITIES  
TO SCALE 
New legislation or standards, such as greenhouse gas 
emissions standards under section 111(d) of the Clean Air 
Act, could overcome these market barriers and help realize 
this lost opportunity. Other federal agencies, such as the 
Federal Energy Regulatory Commission, the Department of 
Energy, and the Pipeline and Hazardous Materials Safety 
Administration, can also take steps to increase industry’s 
investment in cost-effective mitigation options.

Establish performance standards for industry.
The most effective way to overcome market barriers and 
drive investment in cost-effective mitigation options is to 
establish performance standards for both new and existing 
sources. WRI analysis has found that such policies could 
save producers money while driving system-wide leak-
age to less than 1 percent of production.29 Some progress 
has been made on reducing methane emissions from new 
sources: with its 2012 standards, EPA has issued rules that 
will lead to cost-effective reductions in local air pollution 
while simultaneously reducing methane emissions and 
turning a profit for industry. Yet, 90 percent of natural- 
gas-related methane emissions in 2018 will come from 
infrastructure that was already in place in 2011, according 
to ICF International’s analysis.30 Driving investment in  
the full range of opportunities identified here will likely also 
require EPA to go beyond local air pollution standards and 
to target greenhouse gases (methane) specifically.g, 31 Such 
standards could be in the works as the Administration 

REMAINING CHALLENGES
Currently, only about 20 percent of methane emissions 
from natural gas systems are eliminated through voluntary 
measures, according to EPA, leaving considerable cost-
effective emissions reduction opportunity on the table. 
If so much valuable product is going to waste, why aren’t 
companies doing more to eliminate methane emissions?  

Several market barriers prevent investment in otherwise 
attractive opportunities. These barriers include principal-
agent problems, imperfect information, and opportunity 
costs.

Thousands of companies are active in the U.S. natural gas 
industry, from service providers that drill wells to pipeline 
operators to the local utilities that operate the million-plus 
miles of small distribution pipelines, creating principal-
agent problems. With so little vertical integration across 
the industry, the incentives for investment in emissions 
control technologies are not well aligned; too often, the 
company making the investment to reduce leakage of 
natural gas is different from the company that will reap 
the benefits by having more gas to sell. Contractors and 
service providers in the production, processing, transmis-
sion, and distribution stages often do not own the gas 
flowing through their equipment, in much the same way 
that landlords do not often have the proper incentive to 
make energy efficiency investments that would benefit 
only their tenants.

In addition, because emissions measurement and moni-
toring technology is still expensive and not widely used, 
companies have imperfect information on how much 
methane they are emitting, and from which sources. More 
and better information would give these companies a bet-
ter picture of how much money they could save by invest-
ing in technologies that reduce methane emissions.

For some, it is a matter of competing priorities. The 
opportunity cost of investing in equipment to reduce or 
eliminate natural gas leaks is less money to invest else-
where. Although most emissions control technologies pay 
for themselves in three years or less, that period may not 
compare favorably to other investment opportunities.27 
Indeed, a 2007 industry publication states that “companies 

g. �Upstream of the processing plant, natural gas is comprised of roughly 70–95 percent methane, and has high concentrations of volatile organic compounds (VOCs). Regulations targeting 
VOCs at wells and in gathering lines will therefore have large methane cobenefits. After processing strips away many of the impurities in the natural gas, however, and depending on 
the quality of the natural gas when it comes out of the ground, natural gas is typically between 87 and 96 percent methane. This means that even large leaks of natural gas may not emit 
significant quantities of VOCs, making regulations that target methane the best way to ensure emissions reductions. (See R.C. Burruss, 2004, and U.S. Department of Interior U.S. Geological 
Survey, 2004.)
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has announced an economy-wide methane strategy that 
requires EPA to study opportunities to reduce greenhouse 
gas emissions from additional stages of the natural  
gas life cycle, and potentially to propose new standards 
that build on the success of EPA’s New Source Perfor-
mance Standards.32   

Of course, many other options are available to reduce 
methane emissions, including the use of subsidized loans 
or tax credits to incentivize the use of emissions control 
technologies, or penalties to discourage unnecessary 
leaks, vents, or flares of methane.33 However, the nature 
of natural gas systems would seem to limit the effective-
ness of policies that attempt to drive change by imposing 
a price signal, limiting them to a complementary role to 
performance standards. One challenge is that significantly 
shifting the actions taken by owners and operators of 
natural gas infrastructure could require a price signal that 
rivals the price of gas itself. In addition, leaks are spread 
out across over 700,000 wells and over 300,000 miles of 
transmission pipelines, making the types of monitoring 
and verification required for market-based programs  
particularly challenging. 

Other federal agencies can help.
The Federal Energy Regulatory Commission, the Depart-
ment of Energy, and the Pipeline and Hazardous Materi-
als Safety Administration can take steps to reduce GHG 
emissions from natural gas systems in ways that would 
complement emissions standards. 

The Federal Energy Regulatory Commission could work 
with industry to overcome principal-agent problems by 
revising contracts so that service providers throughout the 
natural gas supply chain have the correct incentives for 
making investments in emissions reduction technologies 
under the Natural Gas Act of 1938 and the Energy Policy 
Act of 2005.34, 35, 36 As WRI noted in “Clearing the Air,” 

“Tariffs and contracts between pipeline companies and 
their shippers are subject to oversight and approval by 
the Federal Energy Regulatory Commission (FERC). 
Pipeline companies often require shippers to make in-
kind payments (tariffs) for natural gas used by pipeline 
companies and for lost and unaccounted for fuel (LAUF), 
both of which contribute to upstream CO2 and methane 
emissions from natural gas pipeline systems. While a 
competitive market for natural gas transmission creates 
an incentive for pipeline companies to keep their tariff 
rates down, some tariff structures guarantee cost recov-
ery for fuel usage and LAUF regardless of the services 
rendered.”37  

Indeed, in July 2014, DOE announced that it would  
recommend that FERC explore opportunities for estab-
lishing such mechanisms.38 Moreover, FERC could use 
its regulatory authority to ensure that all natural gas 
operations under its jurisdiction reduce leaks and vents 
of natural gas to the extent technologically and economi-
cally feasible (with provisions for transmission companies 
to recoup their expenses), both to safeguard the safety of 
workers and the system, and to ensure that the interstate 
natural gas market is functioning with as few distortions 
as possible.39 

The Department of Energy can also help improve emis-
sions measurement and control technologies by promot-
ing continued research and development. This could help 
bring down the cost of emissions measurement technolo-
gies and increase their usage across the industry. This, 
in turn, could drive greater investment in cost-effective 
greenhouse gas mitigation activities by improving the 
industry’s ability to target leaks across the million-plus 
miles of pipelines.

In addition, the Pipeline and Hazardous Materials Safety 
Administration could require stricter inspection and 
maintenance standards for gathering, transmission, and 
distribution systems, which would likely help reduce 
methane emissions from those sectors. 
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chapter 5: REDUCING EMISSIONS OF HIGH 
GLOBAL WARMING POTENTIAL GASES

OVERVIEW
Hydrofluorocarbons (HFCs) are a small but rapidly grow-
ing component of U.S. (and global) greenhouse gas (GHG) 
emissions. These gases, which are commercially produced 
for use as refrigerants, foam blowing agents, and aerosols, 
can have very high global warming potentials (GWPs). 
Those with the highest GWPs trap thousands of times 
more heat than carbon dioxide (CO2). Their use is on the 
rise as a result of the phase-out of their ozone-depleting 
predecessors, hydrochlorofluorocarbons (HCFCs).a 

Direct emissions occur when HFCs leak from the equip-
ment they are servicing. In addition, depending on the 
particular HFC’s thermodynamic efficiency, their use 
can affect the equipment’s electricity consumption (and 
CO2 emissions associated with that electricity). However, 
alternatives with low and even near-zero global warming 
potential are increasingly available. They include “natural 
refrigerants” such as CO2 and hydrocarbons (HCs) as well 
as hydrofluoroolefins (HFOs), which contain hydrogen, 
fluorine, and carbon like HFCs, but have much lower 
GWPs.1  Some of these alternatives also offer performance 
benefits (via superior thermodynamic efficiency) com-
pared with the higher-GWP HFCs they replace, lowering 
the amount of electricity consumed and thereby reducing 
electricity bills and GHG emissions.

The Environmental Protection Agency (EPA) estimated 
that the United States can reduce HFC emissions by over 
40 percent from what would otherwise be emitted in 
2030 entirely through measures that have a negative or 
break-even price today. This includes the retrofit of exist-
ing equipment with lower-GWP refrigerants, using new 
equipment, and improving equipment servicing practices. 
Several companies have begun using these alternatives, 
and many are saving money and energy while they reduce 
GHG emissions.

However, adoption remains uneven for a variety of rea-
sons. Although converting to some low-GWP alternatives 
may offer net cost savings, some have high upfront costs 
or require the replacement of equipment, or even the rede-
sign of a facility or vehicle.2 Additionally, there is insuf-
ficient pull on the demand side: customers who purchase 
refrigeration or air conditioning equipment may not know 
about or ask for low-GWP alternatives. Thus, there is little 
reason to believe that the U.S. market will rapidly move to 
these alternatives without new rules or other incentives. 
A number of U.S. chemical manufacturers and equipment 
manufacturers have advocated for a global phase-down 
of high-GWP HFCs through amendments to the Montreal 
Protocol.3 International momentum appears to be gradu-
ally building for these amendments. Policy measures have 
already begun to promote the adoption of lower GWP 
alternatives in some regions, including the European 
Union and Japan.4 

In the meantime, EPA can drive the adoption of nega-
tive and zero-cost technologies, as well as other low-cost 
technologies, using its authority under the Clean Air Act. 
EPA has already started offering incentives to phase out 
high-GWP HFC use in personal vehicles5 and adopted 
standards to control HFC leakage from air conditioning 
systems in pickups, vans, and combination tractors.6 Addi-
tionally, in July 2014, EPA proposed rules under section 
612 of the Clean Air Act (implemented through the Signifi-
cant New Alternatives Policy [SNAP] program) to approve 
low-GWP alternatives and move some higher-GWP HFCs 
out of the market for various applications.7 EPA should 
finalize these proposed rules as well as continue evaluat-
ing and approving low-GWP alternatives and delisting 
high-GWP HFC uses as alternatives become commercially 
available. Over time, it may also be appropriate to imple-
ment a flexible program either by EPA under section 615 
of the Clean Air Act or via Congressional legislation.

a. �HCFCs have been used as a replacement for CFCs, another group of ozone-depleting substances with high global warming potentials that were phased out under the Montreal Protocol 
(except for allowed exemptions). Because of the success of this phase-out, the Montreal Protocol has already spurred large greenhouse gas benefits. However, the rise of HFCs is causing 
GHG emissions from the sector to increase.
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PROFILES OF CHANGE
HFC manufacturers, like Honeywell, Arkema, and 
DuPont, already produce a variety of low-GWP alterna-
tives, including HFOs and HFO blends, for use in automo-
biles, supermarkets, home air conditioning, commercial 
chillers, refrigerators, coolers, and other appliances and 
equipment. Several companies have begun using these and 
other alternatives, finding them as effective as high-GWP 
HFCs, and, in some cases finding that they provide ben-
efits such as improved energy efficiency and net financial 
savings over the lifetime of the equipment. No single solu-
tion works across all end-use applications, but innovation 
is occurring in many end uses. For example:

  �HFO technologies or HFO-HFC blends are being used 
in place of HFCs in automobile air conditioning, the 
production of insulating foams, residential and light 
commercial air conditioning, domestic and commercial 
refrigeration, and industrial waste heat recovery. These 
products have GWPs 50 to 99.9 percent lower than the 
HFCs they replace.8 Because HFOs are a relatively re-
cent innovation, new products are steadily coming into 
the market from various producers. Fifteen car compa-
nies, including General Motors, Ford, and Chrysler, are 
moving forward with HFO-1234yf,9 a new low-GWP re-
frigerant for personal vehicle air conditioners that has a 
GWP 99.9 percent lower than the HFC it replaces.10 An 
estimated 1 million cars on the road worldwide already 
use this low-GWP refrigerant.11 This number is expected 
to grow to nearly 3 million by the end of 2014.12 

  �CO2 transcritical technologyb, 13 is creating new cost 
saving alternatives for some refrigeration applications. 
Sobeys, a Canadian supermarket chain, found that using 
CO2 transcritical technology in cold to moderate climates 
has multiple benefits, including greater cooling capacity, 
lower energy use (via a more efficient heat rejection pro-
cess to heat the store), lower materials and installation 
costs, and lower operating, maintenance, and electricity 
costs.14 While CO2 transcritical systems cost around 11 
percent more than conventional systems, the added cost 
is estimated to be repaid within three years. In 2012, 
Sobeys made CO2 transcritical technology a national 

standard for all its new stores in Canada.15  Convenience 
stores using the technology in Japan have achieved 
10–26 percent energy savings.16 

  �Coca-Cola uses CO2 in 1 million HFC-free coolers and 
aims to purchase only CO2-based equipment by 2015.17  
Because of its transition to CO2-based technology for 
new equipment, Coca-Cola has improved its cooling 
equipment energy efficiency by 40 percent since 2000, 
and reduced their direct greenhouse gas emissions by 
75 percent.c,18 

  �Supermarkets in Europe are increasingly adopting 
“cascade” systems, in which a small HFC- or HFO-
charged loop cools a CO2 loop, combining high energy 
efficiency and smaller HFC charge size (i.e., the amount 
of chemical the system uses).19 Supervalu started using 
this type of system in 2012 at one of its supermarkets 
in California and found that its total greenhouse gas 
impact, including recovery, losses, leakage, and energy 
consumption, was 84 percent lower than a comparable 
HFC-based system.20 

  �Coolers introduced by PepsiCo, Red Bull, Heineken, and 
Ben & Jerry’s are based on hydrocarbons including pro-
pane (R-290) or isobutane (R-600a). These companies 
combined have more than 600,000 units in use today 
and have seen energy efficiency improvements from 10 
to 20 percent or even greater.21 

  �Centrifugal chillers (used to cool buildings like hotels, 
schools, healthcare facilities, and other commercial 
buildings)22 employing low-GWP refrigerants HFO-
1234ze and HFO-1233zd are available and extensive 
studies have validated their high performance in these 
applications.23 For example, Trane just announced a 
line of new HFO chillers that have 10 percent higher  
efficiency than the “next best chiller available.”24 

  �The Consumer Goods Forum, a CEO-level organization 
formed in 2009 of 400 global consumer goods  
manufacturers and retailers with combined revenue  
in excess of $2.8 trillion, has agreed to begin phasing 
out HFC refrigerants in 2015 and replacing them with 
non-HFC refrigerants.25 

b. �The United Nations Environment Programme defines transcritical CO
2
 systems as: “Refrigeration systems that use CO

2
 as a primary refrigerant...In transcritical CO

2
 refrigeration systems, 

CO
2
 is the sole refrigerant, evaporating in the subcritical region and rejecting heat at temperatures above the critical point in a gas cooler instead of a condenser.” (See United Nations 

Environment Programme and Climate and Clean Air Coalition, 2014).
c. �Note, CO

2
 transcritical technology has temperature limitations and works most efficiently in cold to moderate climates.
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Table 5.1  | �Examples of the Abatement Options for Refrigeration and Air Conditioning Applications  
in the United States

Abatement Option Comment

More efficient HFC-134a systems for light-duty motor vehicle air conditioners Leak reductions and greater efficiency decrease direct emissions and lead 
to lower fuel consumption.

HFO-1234yf in light-duty motor vehicle air conditioners HFOs (including HFO-1234yf) have begun to replace the higher-GWP 
HFC-134a in the United States and the European Union, and are now found 
in more than 1 million vehicles worldwide. The European Union banned 
HFC-134a beginning in 2017. A U.S. ban of HFC-134a for passenger 
vehicles is proposed for 2021 models.

More efficient HFO-1234yf systems in light-duty motor vehicle air 
conditioners 

Leak reductions and greater efficiency decrease direct emissions and lead to 
lower fuel consumption. 

Distributed systems in large retail food refrigeration systems Reduced refrigerant charge size and lower leak rates with comparable 
performance and costs. Significant reduction in climate impact. Further 
reductions can be achieved by using lower-GWP HFO blends. 

HFC secondary loop and/or cascade systems in new large retail food 
refrigeration systems

Technology is proven: reduced refrigerant charge and lower leak rates at 
comparable performance and cost. Further reductions can be achieved by 
using HFOs and lower-GWP HFO blends.

Ammonia (NH
3
) or hydrocarbon secondary loop and/or cascade systems in 

large retail food refrigeration systems
Flammability and toxicity concerns have limited adoption. Comparable 
performance but up-front costs may be higher. 

CO
2
 transcritical systems in large retail food refrigeration systems Good performance in cool climates, but lower efficiencies in moderate to 

warmer climates. Up-front costs and maintenance may be higher. 

Reduced GWP refrigerants in large new retail food refrigeration systems Use of lower-GWP HFCs or HFO blends can reduce GWP by more than 50 
percent while reducing energy consumption.

Retrofits of R-404A systems in large retail refrigeration food systems Potential to reduce direct GWP by about 50 percent while reducing energy 
consumption. Proven technology. Several commercial products available. 

Low-GWP refrigerants in small retail food refrigeration systems CO
2
, HCs, and HFOs are being introduced in vending and small retail 

units. Flammability regulations limit charge size. 

Hydrocarbons in window units and dehumidifiers Small charge sizes and equipment modifications may allow safe use. 

OPPORTUNITIES FOR SCALE
According to EPA, these cases are not unusual. In a recent 
analysis, it found that the nation could reduce annual 
consumption of HFCs by 20 percent below business-as-
usual estimates in 2020, and 42 percent in 2030 through 
alternatives that pay for themselves over the life of the 

equipment.26 This is largely the result of considerable 
technological progress over the past several years to  
make low-GWP alternatives available. Examples of these 
cost-effective opportunities for refrigeration and air con-
ditioning (the largest consumers of HFCs) are shown in 
Table 5.1.
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EMERGING OPPORTUNITIES 
While options are available to reduce the majority of HFC 
emissions across most major source categories today, 
more technologies are in the pipeline and are expected 
to be available within the next five years.27 For example, 
Honeywell recently announced plans to expand manu-
facturing of HFO refrigerants, blowing agents, and aero-
sol propellants in the United States,28 and Arkema has 
announced it will construct HFO production facilities.29 
DuPont is producing HFOs and is working on a new foam 
expansion agent based on HFO technology, as well as 
various HFO products for refrigeration and air condition-
ing applications.30 As HFO production scales up, costs for 
these low-GWP alternatives are anticipated to decline. 
This would likely result in more widespread use of these 
alternatives as well as development of more new technol-
ogy, which could drive prices even lower. For example, 
once Heineken started purchasing HFC-free coolers at 
a large scale, their cost dropped by 15 percent. Now the 

main barriers they face to more widespread use of the new 
technology are legal barriers, such as the need for approval 
of HFC alternatives, rather than cost barriers.31 

This would not be the first time that the industry inno-
vated to reduce its environmental impact. With the signing 
and subsequent implementation of the Montreal Proto-
col in 1989, industry began phasing out ozone-depleting 
CFCs. The Protocol drove technological development and 
investment in a new generation of air conditioning and 
refrigeration equipment, leading to significant benefits to 
public health and the environment while producing life-
time savings for consumers.

ARC Research Consultants estimates savings of $1.8 tril-
lion in global health benefits and $459 billion in avoided 
damages to agriculture, fisheries, and materials that 
would have otherwise resulted from increased depletion 
of the ozone layer (both cumulative estimates from 1987 
to 2060).32 Meanwhile, the phase-out of ozone depleting 

Table 5.1  | �Examples of the Abatement Options for Refrigeration and Air Conditioning Applications  
in the United States (continued)

Abatement Option Comment

R-32 (difluoromethane) or HFOs in unitary air conditioners and packaged 
terminal air conditioners/packaged thermal heat pumps

R-32 is being introduced in small mini-split air conditioning systems. 
Safety evaluations are underway for larger systems. HFO-based blends are 
also being evaluated.

Microchannel heat exchangers in small or medium air conditioning 
systems

Potential for charge-size reduction. Some adoption currently underway. 

Low-GWP refrigerants in chillers Multiple HFO options available for direct expansion chillers, centrifugal 
and screw chillers. HCs and ammonia use are also possible for certain 
industrial applications.

Ammonia or CO
2
 in large refrigeration systems Ammonia is commonly used in certain segments such as cold storage 

warehouses and food processing plants. Toxicity, safety, and cost may 
limit applications. 

Refrigerant recovery at disposal Rising cost of refrigerants may drive increased recovery. 

Refrigerant recovery at servicing Rising cost of refrigerants may drive increased recovery.

Leak repair in all systems Increased cost and awareness driving focus on leak reduction.

Source: U.S. Environmental Protection Agency, September 2013, “Global Mitigation of Non-CO
2
 Greenhouse Gases: 2010 – 2030, Section IV: Industrial Processes,” accessible at  

http://www.epa.gov/climatechange/Downloads/EPAactivities/MAC_Report_2013-IV_Industrial.pdf; Thomas Morris, director of commercial development, Honeywell, personal communication, 
July 23, 2014. 
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substances also reduced greenhouse gas emissions by a 
net 135 billion metric tons of CO2 equivalent from 1990 to 
2010 (or about 11 billion metric tons of CO2 equivalent per 
year), according to a United Nations Environment Pro-
gramme (UNEP) study. This net annual greenhouse gas 
savings is about five times higher than the Kyoto Proto-
col’s annual global emissions reduction target for 2008–12 
for all greenhouse gases.33 Note that this figure is likely 
even higher, as it does not include the energy and green-
house gas savings from using more efficient equipment.34 

EPA reports that the phase-out led to substantial lifetime 
savings through reduced energy use and reduced opera-
tion and maintenance costs, as well as improved consumer 
comfort.35 Consumers globally were not faced with higher 
prices for new products, and some of the new products 
were cheaper to maintain than the conventional equip-
ment because of higher efficiencies, product quality, and 
reliability.36 One study noted that by the mid-1990s “virtu-
ally all of the global reductions in CFC use had come at  
little or no cost to consumers.”37 In addition, by 2000, 
CFCs were phased out of 45 percent of existing chillers 
(large air conditioning units for buildings), which reduced 
energy use by almost 7 billion kilowatt hours per year, 
amounting to $480 million annual savings from new 
equipment by 2000, according to the Air-Conditioning, 
Heating, and Refrigeration Institute.38 

REMAINING CHALLENGES
While alternatives are available today, with more expected 
to become available in the near future, achieving con-
tinued deep reductions of high-GWP HFCs will require 
continued technological progress and regulatory respon-
siveness, and may require transitioning to alternatives 
that will not pay for themselves in the short term.

Continued technological progress is needed to develop 
alternatives for a variety of applications—such as house-
hold refrigerators and room air conditioning units— 
while continuing to meet strict standards for safety and 
performance, including efficiency and durability.d, 39

Hydrocarbon alternatives offer the appeal of very low 
global warming potentials (e.g., propane has a GWP of 
3). The main challenge is that their flammability risk may 
make them unsuitable for certain uses. However, after 
extensive testing, EPA has found that some hydrocarbons 
can be effective and safe in certain household applications, 
provided the charge size remains small.40 

In the meantime, other alternatives can reduce the GWP 
of the refrigerants used in these products by about a factor 
of 10—from the thousands to the hundreds. For example, 
Honeywell is working on low-GWP HFO alternatives for 
stationary air conditioning units that provide energy effi-
ciency benefits, reduce costs, and meet industry standards 
for safety and performance.41 In addition, alternatives for 
commercial refrigeration are being evaluated. Oak Ridge 
National Laboratory found that N-40 (a highly efficient 
low-GWP refrigerant in supermarket refrigeration) shows 
considerable increases in energy efficiency and reductions 
in environmental impact.42 Honeywell notes N-40 comes 
without flammability issues.43 

It can take several years before new refrigerants are 
included in commercial products. New chemicals may 
have different properties than their high-GWP counter-
parts, and may require development of new equipment. In 
addition, new chemicals must be tested for safety, health, 
and environmental impacts under EPA’s Significant 
New Alternatives Policy (SNAP) program, and some may 
require revisions to building codes.e, 44 The more quickly 
EPA can fulfill its mission of properly testing new chemi-
cals, the more quickly these alternatives can make it to 
market, reduce GHG emissions, and allow product devel-
opers to turn a profit on their innovations.

Ultimately, achieving deep GHG reductions related to 
HFC use may require the United States (and likely other 
developed countries) to go beyond applications that 
already save costs over the life of the equipment unless 
new chemicals enable cost saving reductions in GHG 
emissions for additional product categories. The upside 
is that using more expensive chemicals could encourage 

d. �Previous reports indicated that the preferred low-GWP refrigerant alternative for personal vehicles, R1234yf, may have flammability issues. However, EPA and scientists have worked to 
further understand and address these issues. In fact, EPA found that R1234yf ignited only when significant modifications to vehicle hardware and controls were made. In another case, it was 
found that the air conditioning systems on some vehicles ruptured during impact, increasing the risk of refrigerant flammability; however, some manufacturers already design these systems 
to avoid leakage after impact (See Andrew Marsh, February 2013, and Fred Sciance, October 2013). In March 2014, scientists found that R1234yf does not pose any serious safety risks,  
and nine vehicles are already using this new refrigerant in North America. (See EurActiv.com and Reuters, March 2013, and Elliot Maras, January 2014).

e. �Note, in investigating the mitigation potential of HFC use, EPA examined technologies available today and noted that its analysis “does not explore new equipment abatement options for 
all refrigeration and AC equipment types, although such options may exist.” Therefore, EPA’s estimate that the United States can lower HFC emissions over 40 percent from what would 
otherwise be emitted in 2030 entirely through measures that come at a negative or break-even price today presumably includes only those technologies that have addressed the remaining 
issues discussed in this section (See U.S. Environmental Protection Agency, September 2013).
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equipment owners to reduce leakage rates, and to employ 
chemical capture and recycling that would help improve 
the overall costs and climate benefits.

BRINGING THESE OPPORTUNITIES  
TO SCALE
Although a number of companies already use low-GWP 
technologies, in many cases realizing cost and/or energy 
savings, uptake of these alternatives has been slow. If  
left unchecked, consumption of high-GWP gases is 
expected to continue to grow considerably. This suggests 
that new standards are ultimately required to realize the 
economy-wide cost savings possible from phasing out 
certain uses of high-GWP HFCs, and to drive continued 
technological process.

International momentum toward phasing down high-
GWP HFCs appears to be building. The proposed North 
American amendment to the Montreal Protocol, which 
would reduce HFC consumption 85 percent by 2035 com-
pared with 2008–10 levels,45 is supported by more than 
100 nations.46 Several key countries that had opposed the 
amendment started to change course in 2013. For exam-
ple, China, which was previously opposed, released a joint 
statement with the United States in June 2013 in which 
the two countries agreed to “work together and with other 
countries through multilateral approaches that include 
using the expertise and institutions of the Montreal Pro-
tocol to phase down the production and consumption of 
HFCs.”47 As part of a September 2013 agreement, lead-
ers from 26 nations—including countries like India and 
Brazil, which have historically been hesitant to commit to 
phasing down the use of HFCs— expressed their support 
for similar action,48 though India has since continued to 
criticize the proposal.
 
A number of producers and consumers of HFCs have come 
out in support of a global phase-down. For example, the 
Alliance for Responsible Atmospheric Policy, an industry 
coalition of about 100 manufacturers and businesses that 
rely on HCFCs and HFCs, supports a planned, orderly 
global phase-down of high-GWP substances, as well as 
action to improve energy efficiency, leakage reduction, 

and recovery/reuse or destruction at end-of-life.49 DuPont, 
which manufactures HFCs and also develops their replace-
ments, is also actively supporting the North American  
proposal to build on the outstanding success of the  
Montreal Protocol.50 

Despite this progress, the Montreal Protocol has yet  
to be amended. Therefore, countries are beginning  
to take action at the national level. For example, the 
European Union’s mobile air conditioning and F-gas 
directives are creating transitions to low-GWP refrigerants 
in various end use sectors51 and Japan is also developing 
HFC regulations.52 In the United States, EPA has started 
offering incentives under its light-duty vehicle greenhouse 
gas regulations that encourage the adoption of lower- 
GWP automobile air conditioning refrigerants as well as 
air conditioning systems with lower leakage.53 In addition, 
EPA has adopted standards to control HFC leakage  
from air conditioning systems in pickups, vans, and  
combination tractors under its medium- and heavy-duty 
GHG regulations.54 

While the necessary international consensus has not yet 
emerged, the United States should continue to work to 
achieve an international phase-down of HFC consump-
tion through amendments to the Montreal Protocol. In 
the meantime, there are options to drive GHG emissions 
reductions through win-win opportunities in the United 
States. Specifically, we find that:

  �EPA should continue to take action domestically under 
its Significant New Alternatives Policy program (SNAP) 
through Section 612 of the Clean Air Act. EPA should fi-
nalize its proposed rule to delist some uses of high-GWP 
HFCs and continue to phase down HFCs where safer, 
cost-effective alternatives exist, including vehicle air 
conditioning, commercial refrigeration like supermar-
kets and vending machines, plastic foam products, and 
consumer aerosols. EPA estimates that the SNAP phase-
down rule will reduce emissions by 31 to 42 million 
metric tons of CO2e in 2020 (a 15 to 20 percent reduc-
tion in projected business-as-usual HFC emissions).55  
This rule could capture nearly all (99 percent) of the 
negative or net-zero cost opportunities identified.f, 56 

f. �EPA’s marginal abatement cost (MAC) curves, when applied to the most recent HFC emissions projections from the U.S. Department of State’s Climate Action (CAR6) report, identified 
roughly 50 million metric tons CO

2
e and 156 million metric tons CO

2
e of potential abatement in 2020 and 2030 from these four main HFC uses, respectively, at a negative or break-even 

price. This amounts to 99 percent of the total negative or zero-net cost HFC abatement identified for both years (See U.S. Environmental Protection Agency (EPA), September 2013, and  
U.S. Department of State, 2014). 
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  �Ultimately, new chemicals will be needed to continue 
driving deep reductions in the use of high-GWP HFCs. 
EPA should work toward ensuring that the alternatives 
development process moves swiftly, and that new chem-
icals are quickly, yet thoroughly, tested for their safety 
and performance. EPA should also finalize its proposed 
rule to list new alternatives and continue evaluating and 
approving appropriate low-GWP alternatives.

  �EPA should also extend the servicing and disposal of 
air conditioning and refrigeration equipment require-
ments for HCFCs and CFCs (under section 608 of the 
Clean Air Act) to HFCs as well as increase initiatives 
for HFC reclamation and recycling to ensure that fewer 
virgin HFC compounds are used until they are able to 
be phased down.g, 57 

  �Over time it may also be appropriate to implement 
a flexible program to reduce emissions of high-GWP 
HFCs either by EPA under Section 615 of the Clean Air 
Act or via Congressional legislation, as the flexibility 
provided by these programs could allow for deeper 
reductions in a cost-effective manner.

g. �The Alliance for Responsible Atmospheric Policy recently petitioned the U.S. EPA to extend the rules on air conditioning and refrigerant management in section 608 of the Clean Air Act to 
HFCs (See Alliance for Responsible Atmospheric Policy, January 2014). This action is also included in the proposed Senate bill, the Super Pollutants Act of 2014 (See “Super Pollutants Act 
of 2014”).
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